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A SEMIEMPIRICAT. PROCEDURE FOR COMPUTING THE WATER-
PRESSURE DISTRIBUTION bN FIAT AND V-BOTTOM PRISMATIC
SURFACES DURING IMPACT OR PLANING

By Robert F. Smiley
SUMMARY

A semiempirical procedure is presented for computing the water-
pressure distribution on flat and V-bottom prismatic surfaces during
planing or landings. For the rectangular flat plate, a consideration
of several previous theoretical derivations and some observations of
the experimental data lead to the development of simple equations which
are in good agreement with experimental data for trims below 30° and
for wetted-length-beam ratios at least up to 3.3. This development is
based primarily on the assumption that the longitudinal distribution
of pressure on a rectangular flat plate is substantially a function
only-of the normal-load coefficient so that this distribution may be
computed from the existing theory for two-dimensional flow. The trans-
verse distribution of pressure is obteined as a compromise between the
available theoretical treatments for very small and very large wetted-
length-beam ratios. For a V-bottom prismatic surface with apprecigble
chine immersion, the pressures on chine-immersed sections of a-model
having an angle of dead rise of 30° are found to be very similar to
those on the corresponding flat plate so that a simple modification of
the flat-plate equations can be used to predict approximately the
pressures on V-bottom surfaces.

INTRODUCTION

In order to determine the magnitude and distribution of the water
pressure on seaplanes during planing or landings, a large amount of
theoretical and experimental research has been-conducted, most of which
has dealt with the problem of a V-bottom prismatic surface (including
the case of the rectangular flat plate). Although neither the avail-
able theories nor the available experimental data are as yet adequate
to predict accurately the pressure distribution on V-bottom surfaces
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for arbitrary landing or planing conditions, a consideration of several
of the available theories and some observations of experimental pressure-
distribution data for a flat plate and a model having an angle of dead
rise of 30° have been found to lead to a simple approximate semiempiri-
cal procedure for computing the pressure distribution. The purpose of
this paper is to present this semiempirical procedure and to determine
its value from comparisons of calculated and experimental pressure
distributions.

The theoretical derivations used in this analysis are as follows:
(1) the derivation of Wagner for the pressure distribution on a rec-
tangular flat plate during steady planing for two-dimensional flow
(references 1 to 3), (2) the derivation of Korvin-Kroukovsky and Chabrow
for the pressure distribution on a submerged wedge having steady sepa-
rated two-dimensional flow behind the wedge (reference 4), and (3) the
derivation of Wagner for the pressure distribution on non-chine-immersed
sections of a straight-side wedge during an impact for very small trims
(references 1, 5, and 6) which has been modified by Pierson and
Leshnover to apply to practical trims (references 6 and 7). Also used
is the fact that the pressure distributions during plening and impact
are very similar and can be correlated approximately according to the
relations given in references 8 and 9.

In this paper a review of these theories is first made and the
results and equations pertinent to this analysis are given. Some of
the results of the theories are then synthesized to form the semiempiri-
cal procedure for computing the pressure distribution. This synthesis
proceeds according to the following outline:

o

(1) The rectangular flat plate

General observations of the experimental data
Consideration of the transverse pressure distribution

(a)
(b)
(c) Consideration of the longitudinal center-line pressure
)
)

oo

distribution ,
Proposed procedure for predicting the pressure distribution

(
( Iimitations of method

o

(2) The V-bottom surface

(a) Consideration of the transverse pressure distribution on
non-chine-immersed and chine-immersed sections

(b) Consideration of the longitudinal center-line pressure
distribution on chine-immersed sections

(¢) Proposed procedure for computing the pressure distribution
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SYMBOLS

hydrodynamic aspect ratio
beam of model, feet
wetted semiwlidth of model in any transverse section, feet
equivalent planing velocity, feet per second
(f =x + & cot T = —z

sin T

hjdrodynamic force normal to keel (normal to surface for
flat plate), pounds

theoretical constant (E—ila§>

_theoretical constant defined following equation (7)

water-rise ratio
instantaneous pressure, pounds per square inch
average value of p/pc in any transverse section

instantaneous velocity of model parallel to longitudinal
center line of model, feet per second (x cos T - y sin T)

projection of wetted area normal to keel, square beams
(Xpb for rectangular flat plate)

time, seconds
instantaneous resultant velocity of model, feet per second

instantaneous velocity of'peak-pressure point, feet per

second (£y/N)

instantaneous velocity of model parallel to undisturbed
water surface, feet per second

instantaneous draft of model normal to undisturbed water

surface, feet



L NACA TN 2583

Na instantaneous velocity of model normal to undisturbed water
surface, feet per second

z instantaneous velocity of model normal to keel (normal to
surface for flat plate), Ffeet per second (X sin T + ¥ cos T)

2 instantaneous acceleration of model normal to keel (normal
to surface for flat plate), feet per second per second

B angle of dead rise, radians i

V4 instantaneous flight-path angle relative to undisturbed
water surface, degrees <Fan“l-2)

x

€ auxiliary varisble used as paremeter in equations (6), (T7),
and (9), radianms

| . transverse distance from center line of model, feet

2] effective angle of dead rise

A distance forward of step parallel to longitudinal center
line of model, beams '

Ad length of model below undisturbed water surface, beams
(v/e:a ) |

Ap wetted length based on peak-pressure location (longitudinal
distance from step to position of peak pressure at model
center line or keel), beams

o) mass density of water, 1.938 slugs per cubic foot

T trim, radians

p(A) aspect-ratio correction

Subscripts: ’

c at longitudinal-center liﬁe or keel

t two-dimensional
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Dimensionless variables:

CNb normal-load coefficient for rectangular flat plate
< E )
EprS
N ressure ratio lpﬁE 1 fg
P 5PV /5P
—J%— pressure coefficient based on f
1pf2

REVIEW OF THEORY

Theoretical impact and planing relations for symmetrical water
landing conditions.- References 8 and 9 show that (with certain exceptions)
planing and impacting prismastic bodies having the same geometrical con-
ditions of angle of dead rise, trim, and wetted-length-beam ratio have
essentially the same shape of pressure distribution over their wetted
surfaces. The magnitudes of these pressures are in planing proportional
to the square of the resultant or planing velocity of the model %. In
impact the pressures bear thé same relation to the square of the equiva-
lent planing velocity f which is defined by the relation F = x + ¥ cot T.
Some of the deviations from this simplified analogy between impact and
planing conditions are discussed in the appendix. Although these devia-
tions should generally be investigated, they are relatively small when
compared with the experimental data used in this paper. Consequently,
for simplicity it is henceforth assumed herein that planing and impact
conditions are adequately relsted by this simple analogy. With this
analogy and the laws of dynamic similarity for planing surfaces (buoyancy
and viscosity being neglected) the pressure distribution on a prismatic-
surface, whether in impact or planing, can be expressed formally by the
functional relation

P__ e (0 A ) e
Lo A
Log2 l(b’ rp? B2 T P )

: 2
vhere the various geometrical parameters in this'equation are illustrated

in figure 1.

Longitudinal pressure distribution on an infinitely wide flat plate
during steady planing.- Wagner has presented a theoretical solution for
the two-dimensional flow for a semi-infinite flat plate during steady
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planing on a perfect nombuoyant fluid (fig. 2) in references 1 and 2.

A more detailed analysis of this same problem is given by Pierson and
Leshnover in reference 3, which presents equations that permit calcula-
tion of the longitudinal pressure distribution and the normal-load coef-
ficient (CNp>t (or average pressure), where <CNb>t is defined by

the relation

- .
1
(?N )t =T JF p D (2)
P 'épfzkp 0
The theoretical pressure distribution can be expressed in the alternate
forms
']-_2—_—=f2<%§: T) (3)
2° _
or
5 - Sy )
- = fql— CN ()'I')
got® 3[)“1” P ] .

vhere, for two-dimensional flow, the relation between the trim and the
normal-load coefficient can be expressed as

ex (5)

CN)C:
(P I T 2 .
cot 5 CO8 T+ tan 5 loge<i—:—za§1F>-+ " ~-T -sinT

Equation (5) is shown in figure 3, end calculated pressure distributions
for various trims end corresponding normal-load coefficients are shown
in figure k4.

Transverse pressure distribution on chine-immersed sections of
flat and V-bottom surfaces for infinitely large wetted lengths.- Korvin-
Kroukovsky and Chabrow have presented in reference 4 (see also refer-
ence 10) a derivation for the two-dimensional flow and pressure distri-
bution for a symmetrical wedge (including the flat plate) completely sub-
merged in a fluid, moving normal to the stream, and having steady separated
flow behind the wedge (fig. 5). The equations presented in reference k4
for the transverse pressure distribution can be written as follows:

)

P _q cos € 2h (6)
Pc 1+ sin e
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where pc 1s the pressure at the center of the wedge and ¢ 1is related

to the transverse distance 1 by the relation : .
n/2
n = 2kb cos Bf (1 + sin €)B(cos €)1P gin ¢ ae (7
€ .
in which
/2 :
% = )4 cos B Jr (1 + sin e)h(cos e)l'h sin € de
0 :
and
h = N - 2@
7

The average pressure is given by the following teble, taken from pasge 105
of reference 10:

B -
(deg) P/PC
0 ]0.879
10 .84
20 .800
30 LTh5
Lo 677
50 .593

In reference 4 the value of pc was given as %pé2 where z is

the normal velocity of the wedge. Expressed in terms of the equivalent
planing velocity, p. would be given by the relation

—-——PC = sine-r (8)
1.¢2
2

since z = £ sin v (see fig. 1).

For the special case of the rectangular flat plate (h = 1), equa-.
tion (7) reduces to

=P (x-
U - (v - 2¢ + 4 cos € + sin 2¢) (9)

b e e+ e vt i At £ e e T . A e v b e by T 2w
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and the average pressure is
L _o0.88 ‘ (10)
Dc .

Transverse pressure distribution on non-chine-immersed sectlons
of V-bottom surfaces.- Wagner (references 1 and 5) has presented a
derivation for the pressure distribution during the zero-trim constant-
velocity impact of a wedge on a smooth water surface (fig. 6); this deri-
vation has been modified by Pierson and Leshnover (references 6 and 7) to
apply to the case of a wedge at a finite angle of trim. The equations
obtained for the pressure distribution can be expressed as follows:

P it cot O 1 2.

= - sin
BEOVi-@F (-2

ten 6 = X \v/r sin2B + K2tan27
2 K2 - 2K sineﬂ - Kzsinzﬁ tanZt

K ~g( _ 3 tan® cos B _ tan B s1n25)
2 1.7x2 3.3x

(11)

where

and

ANALYSTS AND DISCUSSION
Pregssure Distribution on a Rectangular Flat Plate of

Finite Length-Beam Ratio

General observations.- Observations of the experimental pressure
distributions of reference 9 (see for example fig. 7) indicate that for
a given pressure distribution the pressures along the longitudinal center
line of a flat plate are larger than the corresponding pressures along
all other longitudinal sections and that the pressure distributions in
other longitudinal sections are similar in shape to the center-line
distributions but decrease in magnitude toward the edge of the plate.

In other words, for the flat plate, equation (1) can be expressed more

simply as .
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B _ e 2 (12)
where
Pc A .o
P _ . /)
7. = %5 5) (14)

and f5(%) is unity at the center line and decreases to zero at the
sides of the plate. '

Transverse pressure distribution.- The theoretical transverse
distribution of pressure on a flat plate is known for the two limiting
cases of very small (infinitesimal) and very large (infinite) wetted
lengths. For very small wetted lengths (Ay;—>0) the transverse pres-

. sure distribution obviously is

%E =1 ‘(xp->o) | : (15)

and for very large wetted lengths (Ap—»») +the transverse pressure
distribution is given by equations (6§ and (9). These two theoretical
pressure distributions are shown in figure 8 together with some experi-
mental data from reference 9. The experimental data appear, on the
average, to lie somewhere between the two theoretical limiting condi-
tions. The average value of the experimental pressure i/pc is
approximately ’ ) ‘ '

=093‘ ' (ﬁ)

glrdl

Longitudinal distribution of pressure at model center line.- From
a comparison of the experimental data with the theory for the longi-
tudinal pressure distribution on the two-dimensional flat plate (compare
figs. 4 end T), the shape of the experimental curves is found to be similar
to the shape of the theoretical curves, but the curves are not quanti-
tatively similar for the same experimental and theoretical trims. How-
ever, the experimental and theoretical pressure distributions along the
center line are usually found to be quantitatively similar for the same -
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experimental and theoretical normal-load coefficients (see equation (k)
with ¢ replacing t +to denote center-line conditions). The experi-
mental longitudinal center-line pressure may thus be expressed formally

_pfz - f3[x’ (CNp)c] (an

where f3 [%L, (CNp)é] is the theoretical pressure distribution given
P

in figure I in which the subscript t is replaced by c +to denote
the normal-load coefficient, of the center-line strip.

In order to use equation (17), the variation of (CNP)C with trim

.and wetted length must be known. This knowledge is not generally availa-
ble but experimental data are available that are suitable for determining
the variation of the average normal-load coefficient CNP with trim

and wetted length. These two normal-force coefficients mey be related
by means of the average transverse pressure distribution by the relation

(ors)e - =12 )

An example of the variation of CNP with trim and wetted length is

shown in figure 9 which is a cross plot of Locke's high-speed planing
data from reference 11 drawn to the theoretical emd point for Ap—>0

given by equation (5).

In order to determine the accuracy of equetion (17), experimental
longitudinal center-line pressure distributions from reference 9 are
compared in figure 10 with pressure distributions computed from equa-
tions (17) and (18) by using the two limiting values of P/p. according to

equations (10) and (15). The values of CNP needed for these compu-

tations were taken from figure 9 for the cases which fell within the
range of the curves shown, and for other cases Cy,, Wwas computed from

the impact data of reference 9. From these values (CNp)c was deter-

mined from equation (18). The experimental pressures for the trims
of 30° and lower for all wetted lengths tested are seen to be in rather
good agreement with the computed values, the data generally falling

somewhere between the two limit curves for %l =1 and %L = 0.88; thus
c
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sl
be
best over-all agreement.

a velue of equal to gpproximately 0.95 would probably give the

Proposed method.- The preceding discussion can be summarized into
a semiempirical proposed method for computing the pressure distribu-
tion on a rectangular flat plate during impact or planing as indicated
by the following steps: ’

(1) The average normal-load coefficient CNP is obtained from

figure 9 or froﬁ any other availgble source.

(2) The center-line normal-force coefficient (CNp)c is computed
from the relation ’
Crp
C = 1
( Np)c 05 (19)

given by equations (16) and (18).

(3) The pressure distribution along the longitudinal center line
is computed from the relation

Dc » ( )
—— =1 |, [C
%pi,e 3 %’ (Meje

where, by substituting the subscript ¢ for %, this relation is given
by figure k4.

(4) The transverse pressure distribution is computed as the average
between the value predicted by equations (6) and (9) and the value
predicted by equation (15). :

Limitations of method.- Although the foregoing procedure provides
a reasoneble estimate of the pressure distribution for most of the con-
ditions of trim and wetted length encountered during the tests of refer-
ence 9 (1 < 309; kp < 3.3), it may not be so satisfactory for much

larger wetted lengths. TFor such cases it is more likely that the flow
in regions remote from the leading or trailing edges of the plate can
be considered to occur primarily in two-dimensional planes stationary
in space and oriented normal to the model longitudinal center line.
Then according to reference 4 the magnitude of the center-line pressure

will be uniform and equal to %pég where z 1is the velocity of
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the model mormal to its surface which is related to the equivalent
plening velocity by the relation 2 = ¥ sin 7 (see fig. 1) so that the

]

1

20f
The longitudinal distribution of pressure, according to this limiting
condition, should be uniform except near the leading and trailing edges.
(In the very small region of the trailing edge the pressure will drop
to zero and in the very small region of the leading edge (M = XP), it
will rise to equal the dynamic pressure %pfe.) However, an examination

predicted center-line pressure coefficient is P?g sin°r (equation (8)).

of figure 9 shows that the experimental data do not tend to-obey equa-
tion (8) or to approach a uniform longitudinal distribution of preasure.
The proposed procedure for computing the flat-plate pressures may there-
fore give reasonable results for wetted lengths greater than those
tested (XP'< 3.3). However, for extremely large wetted lengths the

procedure will fail. For such cases the-center-line normel-load coeffi-
clent is, from equation (8), equal to

_ P _ )
O

nof+

For example, for an infinitely long flat plate at a trim of 300’
CN?)C = 0.25. Because the pressure distribution for (?N§>c = 0.25

in figure 4 is far from the theoretically required uniform distribution,
it is evident that the procedure fails for this limiting case.

Pressure Distribution on a V-Bottom Prismatic Surface

For the treatment of a V-bottom prismatic surface, it is convenient
to separate the wetted surface into two regions of concern (see fig. l);
namely, (1) the region forward of the intersection of the water surface
with the chines and (2) the region aft of this intersection.

Transverse pressure distribution.- For non-chine-immersed sections,
Pierson and Leshnover have proposed equation (11) for the transverse
pressure distribution on V-bottom planing surfaces. ‘(Some information
regarding step losses is also given in reference 7.) Comparisons with
experimental data for angles of dead rise of 20° and 30° given in refer-
ences 6 and 8, respectively, indicate that the predictions of these
equations are reasonable for trims below approximately 15° but that they
may be unconservative for larger angles of trim. For such cases (large
trims) some more accurste information is given by the peak-pressure
analysis of reference 8. ‘
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For chine-immersed sections of V-bottom surfaces it has been
indicated in reference 8 that the transverse shape of the pressure dis-
tribution on a surface having an angle of dead rise of 30° is qualita-
tively but not quantitatively similar to the predictions of reference 4
(equations (6) to (8)); that is, equations (6) and (7) are in reasonable
agreement with the experimental data but equation (8) is not.

Tongitudinal pressure distribution.- In the region where the chines
are immersed below the water surface, some similarity exists between the
longitudinal pressure distributions on flat and dead-rise surfaces (com-
pare figs. 7 and 11). Specifically, figure 12 shows that the pressure
distribution along the longitudinal center line of the flat plate (p = 09)
is gpproximately the same as that on a model having an angle of dead rise
of 30° for the same trim and wetted length over the chine-immersed part
of the V-bottom surface. The agreement is seen to be best where the
chine-immersed fraction of the total wetted area (see vertical arrows
in fig. 12) is large. Where this fraction is small, as in the first two
parts of figure 12, the agreement is not so good. -

Proposed procedure.- The preceding observations suggest that the
following procedure may give, in general, a reasonable prediction of the
pressure distribution on V-bottom surfaces for angles of dead rise at
least up to 30°. It is assumed that the instanbtaneous velocities, the
trim, the angle of dead rise, and the wetted length are known. First,
compute the longitudinal distribution of pressure along the center line
of a flat plate having the same trim and wetted length and use this
result for the longitudinal center-line distribution on the chiae-immersed
sections of the V-bottom surface. The transverse distribution of pressure
is computed from equation (11) for non-chine-immersed sections and from
equations (6) and (7) for chine-immersed sectionms.

CONCIUDING REMARKS

A semiempirical procedure has been presented for predicting the
water-pressure distribution on rectangular flat plates and V-bottom
prismatlc surfaces during impact or planing. According to this procedure,
for the case of the rectangular flat plate the longitudinal center-line
distribution of pressure is a function only of the normal-load coeffi-
cient, which function can be predicted from the theory for the two-
dimensional problem given by Wagner. The transverse distribution of
pressure is obtained as a compromise between the available theoretical
treatments for very small and very large wetted-length-beam ratios. Com~
parisons with experimental data indicate that the proposed theory may
give reasonsble predictions of the pressure distribution for most prac-
tical conditions.

For the case of the V-bottom surface of finite aﬁgle of dead rise,
the analysis assumes that the longitudinal center-line distribution of
pressure on chine-immersed sections of a V-bottom prismatic surface is
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the same as that on the corresponding flat plate and that the transverse
distribution of pressure on non-chine-immersed and chine-immersed sec-
tions is given by the theories of Wagner and Plerson and of Korvin-
Kroukovsky and Chabrow, resgectively. Ajthough experimental data for

an angle of dead rise of 30~ indicate that the proposed procedure may
work fairly well for this case, the available data .are not sufficient
for determining the general value of the procedure for V-bottom surfaces.

Langley Aeronsutical Laboratory ‘ -
National Advisory Committee for Aeronautics
Langliey Field, Va., October 1, 1951
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APPENDIX

DEVIATIONS FROM SIMPLE IMPACT-PLANING RELATION

Effect of wave rise on a rectangular flat plate.- In the case of
a short flat surface (Xp<< 1.5) the relations between impacting and

planing surfaces are complicated by the presence of a forward splash-up
of water in front of the plate; see the following sketch:

Pressure distribution

Peak-~pressure point

Forward splash-up (Ap - Ag)

Level-water surface

Locus of.step during landing

The rate of change of this splash-up during an impact causes an additional
increment of force on the plate. As a first approximation this effect

is the same as if the equivalent planing velocity were replaced by a

more general velocity W, the velocity of the peak-pressure point (see
reference 9), the ratio between w and f being gilven approximately

in reference 9 as

1.2 ' ,

ax . DY

N = Efi— =1+2co8 T 8in 7 P_ 1] + sin 7 L 1
- sin(y + T)\drg sin(7 + 7)\dAg

Pt

(A1)

that is, the pressures predicted by the equations proposed in the body
of the paper should.be multiplied by the ratio N. TFor large wetted-

d .
length-beam ratios, the splash-up is constant ( Xp =(9 and N = 1;

for small flight-path angles (y-> 0), N also reduces to unity. For
small wetted-length-beam ratios (AP-< 1. 5) at ‘high flight-path angles,

however, the ratio may be considerably greater than unity.
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Effect of deceleration normal to the keel.- During a landing a
component of model deceleration exists normal to the keel (normal to the
surface for the flat plate) and results in a slight distortion of the
pressure distribution-on an impacting body from that on a planing body. -
As a first approximation for this effect the derivation of Wagner (ref-
erence 1) gives the pressure due to acceleration (which is usually

negative) as »
or 2 '
D = pzcvl - (2-) ' (A2)

where c 1is the wetted semiwidth of the model in any transverse plane.

Equation (A2) was derived by assuming two-dimensional flow in transverse
flow planes. Since this assumption is only reasonable for large wetted

lengths, it is recommended that equation (A2) be corrected by an aspect-
ratio correction ¢(A) so that

C

2 -
p = pEco(a) (1 (IL) o (83)
The hydrodynamic aspect ratio is defined as

A= (Ak)
and the suggested aspect-ratio correction is

_ 0.h25

p(A) =

l I}
1 (0 < A <o) (A5)
1 1
1+ XE A +.A'
or
“o(A) = 1 - % (A > 1.5) (A6)

A}

(Equations (A5) and (A6) were obtained by Pabst (references 12 and 13)
from vibration tests of rectangular flat plates.) When the pressure
computed from equation (A3) is large compared with the pressures predicted
in the body of the paper, it should be added. to those pressures.
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N Level-water surface

Peak~prassure line

t
Generated wave

projected area

Figure 1.~ Geometric relations during a landing.
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SNaA S

Pressure distribution

Figure 2.- The two-dimensional flow about a planing flat plate.
Longitudinal section of plate.
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Figure 3.- Theoretical two-dimensional normel-load coefficient
calculated from reference 3.
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Figure 4.- Theoretical
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Free streamlines

Figure 5.- The two-dimensional separated flow about a submerged wedge.
Transverse section of wedge.

Pressure distribution
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Figure 6.- The two-dimensional flow for the impact of a wedge on a
smooth water surface. Transverse section of wedge.
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Figure 7.~ The experimentsl distribution of preésure on & rectangular
flat plate. (Experimental date from reference 9.)
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Figure 8.- The transverse distribution of presgure on a recta

flat plate.
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Steady-planing normal-load coefficient, C"P
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from reference 11

pDoPFb>OT0
5‘\!.:55@-40\%-\

. N\\\\‘frs
* N — 15
\Qi §\\\i\ﬂ%§\\\\\\\\\\‘m
x%&ik\{\a%k\ 12
O >
NN .
m d e — | 9
.08 SN N I—
B S N
» _‘_\‘\~\\‘\:;:=£l_
o |
N
° 0 5 1.0 1.5 2,0 2.5 3.0 3.5
Wetted length, xp, beans

Figure 9.~ High-speed steady—planing'normai-loéd coefficients.
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Figure 10.- The longitudinal distribution of pressure on a rectangular
flat plate at the center line of the model.
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Flgure 1l.- The experimentel distribution of

%

T

reseure on & prismatic

surface having en angle of dead rise of 30°. (Experimental data

from reference 8.)
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Flgure 12.- Compariscn of longitudinael-pressure-distribution coefficients
at the keel for similar models having angles of dead rise of (° and 30°.
(Vertical arrows indicate the longitudinal position where the chines of
the 30° model become immersed.)
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